
Text classification 
with Naïve Bayes

Lab 3
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The Task

• Building a model for movies reviews in English 
for classifying it into positive or negative.

• Test classifier on new reviews

Takes time
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Sentiment Polarity Dataset Version 2.0

• 1000 positive movie review and 1000 negative review texts from: 
Thumbs up? Sentiment Classification using Machine Learning 
Techniques. Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 
Proceedings of EMNLP, pp. 79--86, 2002.

• Our data source was the Internet Movie Database (IMDb) archive 
of the rec.arts.movies.reviews newsgroup.3 We selected only 
reviews where the author rating was expressed either with stars or 
some numerical value (other conventions varied too widely to 
allow for automatic processing). Ratings were automatically 
extracted and converted into one of three categories: positive, 
negative, or neutral. For the work described in this paper, we 
concentrated only on discriminating between positive and negative 
sentiment.”

From: http://www.cs.cornell.edu/people/pabo/movie-review-data/
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The data
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Open WEKA

• Convert file to .arff format using CLI interface:
java weka.core.converters.TextDirectoryLoader -dir data/movies_reviews > data/movies_reviews.arff

• And then open it from WEKA explorer – skip to 
slide 12
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Select folder
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Choose converter
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Class
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Edit->View
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Save converted file in arff format
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From text to vectors

• D=[ w1,w2 ,w3 , , , class] 
• review1=“great movie”
• review2=“excellent film”
• review3=“worst film ever”
• review4=“sucks” eve
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V1=[ 0, 0, 0, 1, 1, 0, 0, +]

V2=[ 0, 1, 1, 0, 0, 0, 0, +]

V3=[ 1, 0, 1, 0, 0, 0, 1, -]

V4=[ 0, 0, 0, 0, 0, 1, 0, -]
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Convert text field into word vectors

• Filter->

• Unsupervised->

• Attribute ->

• StringToWordVector

• This will convert each word in string field into a 
numeric attribute

• The name of the attribute would be the word itself

• The value of the attribute would be 0 (absent) or 1 
(present) in the current document
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Right-click for options

• Select attribute 

to convert

13



Options

• Can convert all words 
to lower case –
preferred
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Options

• Can output the 
words counts in each 
document, instead of 
just occurrence.

• We will use the 
boolean ‘present-
absent’ for this lab
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Options

• If 
‘outputWordsCounts’ 
is selected, can 
normalize word counts 
by dividing to the total 
number of words in 
the document – thus 
creating the 
normalized word 
vector
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Options

• If 
‘outputWordsCounts’ 
is selected, can do TF 
or IDF-transform or 
both for each 
document:
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Term Frequency –Document Frequency

Tf (wordi,d)=frequency (word i)/[total words in d]

DF(wordi) = number of documents containing 
wordi/total number of documents

The bigger TF the more discriminative is wordi

The smaller DF the more discriminative is wordi
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TF-IDF index for each wordi in 
document d

• Term Frequency – Inverted Document Frequency 
model

TF -IDF(wordi,d)=TF(wordi)* log (1/DF(wordi))

The bigger TF-IDF score, the more discriminative is 
wordi

Inverse document 
frequency - IDF
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TF-IDF example

• Consider a document containing 100 words wherein 
the word cow appears 3 times. Following the 
previously defined formulas, the term frequency (TF) 
for cow is then (3 / 100) = 0.03. Now, assume we 
have 10 million documents and cow appears in one 
thousand of these. Then, the inverse document 
frequency is calculated as log(10 000 000 / 1 000) = 
4. The tf–idf score is the product of these quantities: 
0.03 × 4 = 0.12.
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Options

• Keeps 1000 most 
frequent words for 
each class. 
Sometimes a little 
more, if there is a tie

• Less frequent words 
are discarded
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How the words are extracted

• The tokenizer is supplied 
with the list of characters 
which are considered as 
delimiters. The extracted 
word is the trimmed 
string between two 
delimiters

• You can provide your 
own application-
dependent tokenizer
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How the words are extracted

• Words such as “the”, 
“in”, “of” are removed 
– they occur in each 
document

• You can replace the 
default list with your 
own stop word list 
such as supplied 
stopwords_google.txt
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How the words are extracted

• Stemmer – identifies 
words which have the 
same root, for 
example: “cat”, “cats”, 
“catlike”, “catty” have 
similar meaning 
related to the root 
“cat” and stemmer  
treats them all as the 
same word. No 
stemmer by default

24



Done with options

• Select attributeIndex=1, the rest are default 
attributes and apply the filter

• Note: now the class attribute is the first, in 
addition – its name is not a valid attribute 
name
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Move class attribute to the end of vector
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Rename class attribute

• documentClass
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Clean some junk words
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Convert all numeric to nominal (boolean)
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Visualize all attributes
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Presence of a word discriminates 
between the classesPresence 

of a word

Presence 
of a word
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Absence of a word discriminates 
between the classesAbsence 

of a word

Absence 
of a word

32



Classify using Naïve Bayes

Don’t use 
cross-

validation 
– takes 

too much 
time
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Result

• Accuracy: 78.67 %

• We might try to improve it by selecting only 
the best words
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Feature (discriminative words) 
selection

• WEKA class CfsSubsetEval evaluates the worth of a subset of 
attributes by considering the individual predictive ability of each 
feature along with the degree of redundancy between them.

Subsets of features that are highly correlated with the class while 
having low inter-correlation are preferred.

To find such attributes WEKA uses BestFirst search: Searches the space 
of attribute subsets by greedy hillclimbing augmented with a 
backtracking facility. Setting the number of consecutive non-
improving nodes allowed controls the level of backtracking done. 
Best first may start with the empty set of attributes and search 
forward, or start with the full set of attributes and search backward, 
or start at any point and search in both directions (by considering all 
possible single attribute additions and deletions at a given point).
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Attribute (words) selection
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Selected discriminative attributes 
(words): 51

• Right-click result -> save reduced data as 
Movies_reviews_reduced.arff

world
worst
animation
definitely
deserves
effective
flaws
greatest
hilarious
memorable
overall
perfectly
realistic
share
solid
subtle

also
awful
bad
boring
both
dull
fails
great
joke
lame
life
many
maybe
mess
nothing
others

Some of selected 
words
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Classify again

• Accuracy 78.67 – no improvement, but only 
51 words instead of 1155 
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Rules-Decision table

• Accuracy – 69.85

• Feature set: 3,4,10,14,17,33,48,51,52

• Leave only these attributes, plus class 
attribute, and use naïve bayes again

• Accuracy – 72.05
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Classifying new reviews

• Append – put new reviews into a positive 
folder

• Do the same manipulation on the new dataset

• Remove new reviews into a new test set

• Classify
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New reviews to classify

• Go to: http://www.rottentomatoes.com/
• or
http://www.cinemaclock.com/Nanaimo.html

• Select one movie and find reviews

• Generate test set by copying the text of each 
review into a separate .txt file 

• Store all new files in the ‘pos’ folder under the 
names NewReview1-5.txt
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Repeat all the steps with new reviews 
included

• Open file-> all files -> select folder 
movie_reviews (Select option-outputFileName
– to be sure where your new reviews are) 
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Continue work on attributes

• Filter -> StringToWordVector: AttributeIndex = 
1

• Remove some remaining meaningless words 
from the top of the list

• Edit -> select @class@ -> right-click -> 
AttributeAsClass

• select @class@ -> right-click -> rename to 
DocumentClass
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Select attributes

• Select attributes with default parameters and 
save data file as movies_review_training.arff
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Continue work on attributes

• Convert numeric 0-1 values to nominal

• Save as movies_reviews_training.arff
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Transfer new records to a new text file

• Open your movie_reviews_training.arff in text editor
• Copy the entire header up to the @data tag into a new text 

file
• Cut and paste the last 5 lines for new reviews into the same 

new file
• Save as movie_reviews_new.arff
• Load movie_reviews_training.arff and remove the fileID

attribute. Save file
• Load movie_reviews_new.arff :

– Remove fileID attribute 
– Replace class value with ‘?’ (Edit-> Replace values with …->pos 

to ‘?’
– Save file
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Run classifier for prediction

• inst#,    actual, predicted, error, probability 
distribution

• 1          ?      1:neg      +  *1      0    

• 2          ?      1:neg      +  *1      0    

• 3          ?      1:neg      +  *1      0    

• 4          ?      1:neg      +  *0.999  0.001

• 5          ?      1:neg      +  *0.993  0.007

• Test if the classifier is correct
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