
Text classification
with Naïve Bayes

Lab 3

1

The Task

• Building a model for movies reviews in English
for classifying it into positive or negative.

• Test classifier on new reviews

Takes time

2

Sentiment Polarity Dataset Version 2.0

• 1000 positive movie review and 1000 negative review texts from:
Thumbs up? Sentiment Classification using Machine Learning
Techniques. Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
Proceedings of EMNLP, pp. 79--86, 2002.

• Our data source was the Internet Movie Database (IMDb) archive
of the rec.arts.movies.reviews newsgroup.3 We selected only
reviews where the author rating was expressed either with stars or
some numerical value (other conventions varied too widely to
allow for automatic processing). Ratings were automatically
extracted and converted into one of three categories: positive,
negative, or neutral. For the work described in this paper, we
concentrated only on discriminating between positive and negative
sentiment.”

From: http://www.cs.cornell.edu/people/pabo/movie-review-data/

3

http://www.cs.cornell.edu/people/pabo/movie-review-data/

The data

4

Open WEKA

• Convert file to .arff format using CLI interface:
java weka.core.converters.TextDirectoryLoader -dir data/movies_reviews > data/movies_reviews.arff

• And then open it from WEKA explorer – skip to
slide 12

5

Select folder

6

Choose converter

7

Class

8

Edit->View

9

Save converted file in arff format

10

From text to vectors

• D=[w1,w2 ,w3 , , , class]
• review1=“great movie”
• review2=“excellent film”
• review3=“worst film ever”
• review4=“sucks” eve

r

exce
llen

t

film

gre
at

m
o

vie

su
cks

w
o

rst

class

V1=[0, 0, 0, 1, 1, 0, 0, +]

V2=[0, 1, 1, 0, 0, 0, 0, +]

V3=[1, 0, 1, 0, 0, 0, 1, -]

V4=[0, 0, 0, 0, 0, 1, 0, -]
11

Convert text field into word vectors

• Filter->

• Unsupervised->

• Attribute ->

• StringToWordVector

• This will convert each word in string field into a
numeric attribute

• The name of the attribute would be the word itself

• The value of the attribute would be 0 (absent) or 1
(present) in the current document

12

Right-click for options

• Select attribute

to convert

13

Options

• Can convert all words
to lower case –
preferred

14

Options

• Can output the
words counts in each
document, instead of
just occurrence.

• We will use the
boolean ‘present-
absent’ for this lab

15

Options

• If
‘outputWordsCounts’
is selected, can
normalize word counts
by dividing to the total
number of words in
the document – thus
creating the
normalized word
vector

16

Options

• If
‘outputWordsCounts’
is selected, can do TF
or IDF-transform or
both for each
document:

17

Term Frequency –Document Frequency

Tf (wordi,d)=frequency (word i)/[total words in d]

DF(wordi) = number of documents containing
wordi/total number of documents

The bigger TF the more discriminative is wordi

The smaller DF the more discriminative is wordi

18

TF-IDF index for each wordi in
document d

• Term Frequency – Inverted Document Frequency
model

TF -IDF(wordi,d)=TF(wordi)* log (1/DF(wordi))

The bigger TF-IDF score, the more discriminative is
wordi

Inverse document
frequency - IDF

19

TF-IDF example

• Consider a document containing 100 words wherein
the word cow appears 3 times. Following the
previously defined formulas, the term frequency (TF)
for cow is then (3 / 100) = 0.03. Now, assume we
have 10 million documents and cow appears in one
thousand of these. Then, the inverse document
frequency is calculated as log(10 000 000 / 1 000) =
4. The tf–idf score is the product of these quantities:
0.03 × 4 = 0.12.

20

Options

• Keeps 1000 most
frequent words for
each class.
Sometimes a little
more, if there is a tie

• Less frequent words
are discarded

21

How the words are extracted

• The tokenizer is supplied
with the list of characters
which are considered as
delimiters. The extracted
word is the trimmed
string between two
delimiters

• You can provide your
own application-
dependent tokenizer

22

How the words are extracted

• Words such as “the”,
“in”, “of” are removed
– they occur in each
document

• You can replace the
default list with your
own stop word list
such as supplied
stopwords_google.txt

23

How the words are extracted

• Stemmer – identifies
words which have the
same root, for
example: “cat”, “cats”,
“catlike”, “catty” have
similar meaning
related to the root
“cat” and stemmer
treats them all as the
same word. No
stemmer by default

24

Done with options

• Select attributeIndex=1, the rest are default
attributes and apply the filter

• Note: now the class attribute is the first, in
addition – its name is not a valid attribute
name

25

Move class attribute to the end of vector

26

Rename class attribute

• documentClass

27

Clean some junk words

28

Convert all numeric to nominal (boolean)

29

Visualize all attributes

30

Presence of a word discriminates
between the classesPresence

of a word

Presence
of a word

31

Absence of a word discriminates
between the classesAbsence

of a word

Absence
of a word

32

Classify using Naïve Bayes

Don’t use
cross-

validation
– takes

too much
time

33

Result

• Accuracy: 78.67 %

• We might try to improve it by selecting only
the best words

34

Feature (discriminative words)
selection

• WEKA class CfsSubsetEval evaluates the worth of a subset of
attributes by considering the individual predictive ability of each
feature along with the degree of redundancy between them.

Subsets of features that are highly correlated with the class while
having low inter-correlation are preferred.

To find such attributes WEKA uses BestFirst search: Searches the space
of attribute subsets by greedy hillclimbing augmented with a
backtracking facility. Setting the number of consecutive non-
improving nodes allowed controls the level of backtracking done.
Best first may start with the empty set of attributes and search
forward, or start with the full set of attributes and search backward,
or start at any point and search in both directions (by considering all
possible single attribute additions and deletions at a given point).

35

Attribute (words) selection

36

Selected discriminative attributes
(words): 51

• Right-click result -> save reduced data as
Movies_reviews_reduced.arff

world
worst
animation
definitely
deserves
effective
flaws
greatest
hilarious
memorable
overall
perfectly
realistic
share
solid
subtle

also
awful
bad
boring
both
dull
fails
great
joke
lame
life
many
maybe
mess
nothing
others

Some of selected
words

37

Classify again

• Accuracy 78.67 – no improvement, but only
51 words instead of 1155

38

Rules-Decision table

• Accuracy – 69.85

• Feature set: 3,4,10,14,17,33,48,51,52

• Leave only these attributes, plus class
attribute, and use naïve bayes again

• Accuracy – 72.05

39

Classifying new reviews

• Append – put new reviews into a positive
folder

• Do the same manipulation on the new dataset

• Remove new reviews into a new test set

• Classify

40

New reviews to classify

• Go to: http://www.rottentomatoes.com/
• or
http://www.cinemaclock.com/Nanaimo.html

• Select one movie and find reviews

• Generate test set by copying the text of each
review into a separate .txt file

• Store all new files in the ‘pos’ folder under the
names NewReview1-5.txt

41

http://www.rottentomatoes.com/
http://www.cinemaclock.com/Nanaimo.html

Repeat all the steps with new reviews
included

• Open file-> all files -> select folder
movie_reviews (Select option-outputFileName
– to be sure where your new reviews are)

42

Continue work on attributes

• Filter -> StringToWordVector: AttributeIndex =
1

• Remove some remaining meaningless words
from the top of the list

• Edit -> select @class@ -> right-click ->
AttributeAsClass

• select @class@ -> right-click -> rename to
DocumentClass

43

Select attributes

• Select attributes with default parameters and
save data file as movies_review_training.arff

44

Continue work on attributes

• Convert numeric 0-1 values to nominal

• Save as movies_reviews_training.arff

45

Transfer new records to a new text file

• Open your movie_reviews_training.arff in text editor
• Copy the entire header up to the @data tag into a new text

file
• Cut and paste the last 5 lines for new reviews into the same

new file
• Save as movie_reviews_new.arff
• Load movie_reviews_training.arff and remove the fileID

attribute. Save file
• Load movie_reviews_new.arff :

– Remove fileID attribute
– Replace class value with ‘?’ (Edit-> Replace values with …->pos

to ‘?’
– Save file

46

Run classifier for prediction

• inst#, actual, predicted, error, probability
distribution

• 1 ? 1:neg + *1 0

• 2 ? 1:neg + *1 0

• 3 ? 1:neg + *1 0

• 4 ? 1:neg + *0.999 0.001

• 5 ? 1:neg + *0.993 0.007

• Test if the classifier is correct

47

